Internal energy is first order homogeneous function =================================================== Internal energy is a first-order homogeneous function of its internal variables (entropy, volume, and particle count). **Links:** #. `Wikipedia, first equation `__. .. py:currentmodule:: symplyphysics.conditions.thermodynamics.internal_energy_is_first_order_homogeneous_function .. py:data:: entropy :attr:`~symplyphysics.symbols.thermodynamics.entropy`. Symbol: :code:`S` Latex: :math:`S` Dimension: :code:`energy/temperature` .. py:data:: volume :attr:`~symplyphysics.symbols.classical_mechanics.volume` Symbol: :code:`V` Latex: :math:`V` Dimension: :code:`volume` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: internal_energy :attr:`~symplyphysics.symbols.thermodynamics.internal_energy` as a function of :attr:`~entropy`, :attr:`~volume`, and :attr:`~particle_count`. Symbol: :code:`U(S, V, N)` Latex: :math:`U{\left(S,V,N \right)}` Dimension: :code:`energy` .. py:data:: factor Dimensionless real-valued factor. Symbol: :code:`k` Latex: :math:`k` Dimension: :code:`dimensionless` .. py:data:: homogeneity_condition :code:`U(k * S, k * V, k * N) = k * U(S, V, N)` Latex: .. math:: U{\left(k S,k V,k N \right)} = k U{\left(S,V,N \right)}