Characteristic resitance of rectangular waveguide for transverse magnetic waves =============================================================================== The resistance of a rectangular waveguide to transverse magnetic waves can be calculated from the resistance of the medium within the waveguide, the wavelength of the signal and the critical wavelength of the waveguide. **Conditions:** #. Waves propagating in the waveguide must be transverse magnetic waves. .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.waveguides.characteristic_resistance_of_rectangular_waveguide_for_transverse_magnetic_waves .. py:data:: wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` in the waveguide. Symbol: :code:`eta` Latex: :math:`\eta` Dimension: :code:`impedance` .. py:data:: medium_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the medium filling the waveguide. Symbol: :code:`eta_0` Latex: :math:`\eta_{0}` Dimension: :code:`impedance` .. py:data:: vacuum_wavelength :attr:`~symplyphysics.symbols.classical_mechanics.wavelength` of the signal in vacuum. Symbol: :code:`lambda` Latex: :math:`\lambda` Dimension: :code:`length` .. py:data:: critical_wavelength Critical :attr:`~symplyphysics.symbols.classical_mechanics.wavelength`. See :ref:`Critical wavelength of waveguide `. Symbol: :code:`lambda_c` Latex: :math:`\lambda_\text{c}` Dimension: :code:`length` .. py:data:: law :code:`eta = eta_0 * sqrt(1 - (lambda / lambda_c)^2)` Latex: .. math:: \eta = \eta_{0} \sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}