Effective permittivity of microstrip line from frequency ======================================================== The frequency-dependent effective permittivity of the microstrip line can be calculated from its frequency-indendent effective permittivity and physical dimensions. **Notation:** #. :math:`c` (:code:`c`) is :attr:`~symplyphysics.quantities.speed_of_light`. .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.transmission_lines.microstrip_lines.effective_permittivity_for_microstrip_line_from_frequency .. py:data:: effective_permittivity Effective :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the microstrip line when frequency dependence is taken into account. See :ref:`Effective permittivity of microstrip line `. Symbol: :code:`epsilon_eff` Latex: :math:`\varepsilon_\text{eff}` Dimension: :code:`dimensionless` .. py:data:: relative_permittivity :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the dielectric substrate of the microstrip line. Symbol: :code:`epsilon_r` Latex: :math:`\varepsilon_\text{r}` Dimension: :code:`dimensionless` .. py:data:: frequency :attr:`~symplyphysics.symbols.classical_mechanics.temporal_frequency` of the signal. Symbol: :code:`f` Latex: :math:`f` Dimension: :code:`frequency` .. py:data:: substrate_thickness :attr:`~symplyphysics.symbols.classical_mechanics.thickness` of the substrate. Symbol: :code:`h` Latex: :math:`h` Dimension: :code:`length` .. py:data:: width Width (see :attr:`~symplyphysics.symbols.classical_mechanics.length`) of the microstrip line. Symbol: :code:`w` Latex: :math:`w` Dimension: :code:`length` .. py:data:: independent_effective_permittivity :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the microstrip line when frequency dependence is omitted. See :ref:`Effective permittivity of microstrip line `. Symbol: :code:`epsilon_eff0` Latex: :math:`\varepsilon_{\text{eff}, 0}` Dimension: :code:`dimensionless` .. py:data:: law :code:`epsilon_eff = ((sqrt(epsilon_r) - sqrt(epsilon_eff0)) / (1 + 4 / (4 * h * f * (1 + 2 * log(1 + w / h))^2 * sqrt(epsilon_r - 1) * 1 / (2 * c))^(3/2)) + sqrt(epsilon_eff0))^2` Latex: .. math:: \varepsilon_\text{eff} = \left(\frac{\sqrt{\varepsilon_\text{r}} - \sqrt{\varepsilon_{\text{eff}, 0}}}{1 + \frac{4}{\left(4 h f \left(1 + 2 \log \left( 1 + \frac{w}{h} \right)\right)^{2} \sqrt{\varepsilon_\text{r} - 1} \frac{1}{2 c}\right)^{\frac{3}{2}}}} + \sqrt{\varepsilon_{\text{eff}, 0}}\right)^{2}