Wave impedance of coplanar line when hyperbolic sine ratio squared is between :math:`0` and :math:`\frac{1}{2}` =============================================================================================================== Under the conditions described below, the wave impedance of a coplanar line depends on its effective permittivity and physical dimensions. **Conditions:** #. :math:`h < \frac{d}{4}` #. :math:`0 < \left( \frac{\sinh{ \left((\pi l) / (4 h)\right) }}{\sinh{ \left((\pi d) / (4 h)\right) }} \right)^2 \le \frac{1}{2}` See below for symbol descriptions. .. TODO: check if it is *wave impedance* or *surge (characteristic) impedance* TODO: rename file to feature wave *impedance* TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.transmission_lines.coplanar_lines.wave_resistance_of_coplanar_line_first .. py:data:: wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the coplanar line. Symbol: :code:`eta` Latex: :math:`\eta` Dimension: :code:`impedance` .. py:data:: effective_permittivity Effective :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the coplanar line. See :ref:`Effective permittivity of coplanar line `. Symbol: :code:`epsilon_eff` Latex: :math:`\varepsilon_\text{eff}` Dimension: :code:`dimensionless` .. py:data:: electrode_distance :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance` between the first and last electrodes. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: central_electrode_width Width (see :attr:`~symplyphysics.symbols.classical_mechanics.length`) of the central electrode of the coplanar line. Symbol: :code:`l` Latex: :math:`l` Dimension: :code:`length` .. py:data:: resistance_constant Constant equal to :math:`30 \, \Omega` (:code:`30 Ohm`). Symbol: :code:`R_0` Latex: :math:`R_0` Dimension: :code:`impedance` .. py:data:: law :code:`eta = R_0 / sqrt(epsilon_eff) * log(2 * (1 + (1 - (l / d)^2)^(1 / 4)) / (1 - (1 - (l / d)^2)^(1 / 4)))` Latex: .. math:: \eta = \frac{R_0}{\sqrt{\varepsilon_\text{eff}}} \log \left( \frac{2 \left(1 + \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}\right)}{1 - \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}} \right)