Time independent solution in one dimension ========================================== The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. **Notation:** #. :math:`\hbar` (:code:`hbar`) is :attr:`~symplyphysics.quantities.hbar`. **Condition:** #. This law works in the case of a single spatial dimension. To use it for the 3-dimensional space replace the spatial second derivative with the Laplace operator. #. The wave function is independent of time. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.quantum_mechanics.schrodinger.time_independent_equation_in_one_dimension .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: wave_function :attr:`~symplyphysics.symbols.quantum_mechanics.wave_function` as a function of :attr:`~position`. Symbol: :code:`psi(x)` Latex: :math:`\psi{\left(x \right)}` Dimension: :code:`1/sqrt(length)` .. py:data:: potential_energy :attr:`~symplyphysics.symbols.classical_mechanics.potential_energy` as a function of :attr:`~position`. Symbol: :code:`U(x)` Latex: :math:`U{\left(x \right)}` Dimension: :code:`energy` .. py:data:: particle_mass :attr:`~symplyphysics.symbols.basic.mass`. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: particle_energy :attr:`~symplyphysics.symbols.basic.energy` of the particle. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: law :code:`-hbar^2 / (2 * m) * Derivative(psi(x), (x, 2)) + U(x) * psi(x) = E * psi(x)` Latex: .. math:: - \frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi{\left(x \right)} + U{\left(x \right)} \psi{\left(x \right)} = E \psi{\left(x \right)}