Wave eigenfunctions of quantum harmonic oscillator¶
The time-independent Schrödinger equation describing the wave function of the quantum oscillator can be solved to get the corresponding wave eigenfunctions and energy eigenvalues of the Hamiltonian operator. Each eigenfunction describes a stationary state of the quantum mechanical system with the corresponding energy value (eigenvalue of the Hamiltonian). The combination of all eigenfunctions and eigenvalues represent the energy states allowed.
Notation:
\(\hbar\) (
hbar
) ishbar
.\(H_n\) (
hermite
) is the \(n\)-th physicists’ Hermite polynomial.
Links:
- wave_function¶
\(n\)-th wave eigenfunction (solution of the time-independent Schrödinger equation). See
wave_function
.- Symbol:
psi
- Latex:
\(\psi\)
- Dimension:
1/sqrt(length)
- mode_number¶
Mode number. See
nonnegative_number
.- Symbol:
N
- Latex:
\(N\)
- Dimension:
dimensionless
- angular_frequency¶
angular_frequency
of the oscillator.- Symbol:
w
- Latex:
\(\omega\)
- Dimension:
angle/time
- law¶
psi = (m * w / (pi * hbar))^(1/4) / sqrt(2^N * factorial(N)) * exp(-m * w / (2 * hbar) * x^2) * hermite(N, sqrt(m * w / hbar) * x)
- Latex:
- \[\psi = \frac{\sqrt[4]{\frac{m \omega}{\pi \hbar}}}{\sqrt{2^{N} N!}} \exp{\left(- \frac{m \omega}{2 \hbar} x^{2} \right)} H_{N}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)\]