Wave eigenfunctions of quantum harmonic oscillator¶
The time-independent Schrödinger equation describing the wave function of the quantum oscillator can be solved to get the corresponding wave eigenfunctions and energy eigenvalues of the Hamiltonian operator. Each eigenfunction describes a stationary state of the quantum mechanical system with the corresponding energy value (eigenvalue of the Hamiltonian). The combination of all eigenfunctions and eigenvalues represent the energy states allowed.
Notation:
(hbar
) ishbar
. (hermite
) is the -th physicists’ Hermite polynomial.
Links:
- wave_function¶
-th wave eigenfunction (solution of the time-independent Schrödinger equation). Seewave_function
.
- Symbol:
psi
- Latex:
- Dimension:
1/sqrt(length)
- mode_number¶
Mode number. See
nonnegative_number
.
- Symbol:
N
- Latex:
- Dimension:
dimensionless
- Symbol:
m
- Latex:
- Dimension:
mass
- angular_frequency¶
angular_frequency
of the oscillator.
- Symbol:
w
- Latex:
- Dimension:
angle/time
- Symbol:
x
- Latex:
- Dimension:
length
- law¶
psi = (m * w / (pi * hbar))^(1/4) / sqrt(2^N * factorial(N)) * exp(-m * w / (2 * hbar) * x^2) * hermite(N, sqrt(m * w / hbar) * x)
- Latex: