Wave eigenfunctions of quantum harmonic oscillator ================================================== The time-independent Schrödinger equation describing the wave function of the quantum oscillator can be solved to get the corresponding wave eigenfunctions and energy eigenvalues of the Hamiltonian operator. Each eigenfunction describes a stationary state of the quantum mechanical system with the corresponding energy value (eigenvalue of the Hamiltonian). The combination of all eigenfunctions and eigenvalues represent the energy states allowed. **Notation:** #. :math:`\hbar` (:code:`hbar`) is :attr:`~symplyphysics.quantities.hbar`. #. :math:`H_n` (:code:`hermite`) is the :math:`n`-th physicists' Hermite polynomial. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.quantum_mechanics.harmonic_oscillator.wave_eigenfunctions .. py:data:: wave_function :math:`n`-th wave eigenfunction (solution of the time-independent Schrödinger equation). See :attr:`~symplyphysics.symbols.quantum_mechanics.wave_function`. Symbol: :code:`psi` Latex: :math:`\psi` Dimension: :code:`1/sqrt(length)` .. py:data:: mode_number Mode number. See :attr:`~symplyphysics.symbols.basic.nonnegative_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: oscillator_mass :attr:`~symplyphysics.symbols.basic.mass` of the oscillator. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the oscillator. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position` of the oscillator. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: law :code:`psi = (m * w / (pi * hbar))^(1/4) / sqrt(2^N * factorial(N)) * exp(-m * w / (2 * hbar) * x^2) * hermite(N, sqrt(m * w / hbar) * x)` Latex: .. math:: \psi = \frac{\sqrt[4]{\frac{m \omega}{\pi \hbar}}}{\sqrt{2^{N} N!}} \exp{\left(- \frac{m \omega}{2 \hbar} x^{2} \right)} H_{N}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)