Scattering matrix to transmission matrix ======================================== Knowing the parameters of the scattering matrix, it is possible to determine the parameters of the transmission matrix. **Notes:** #. See :ref:`Transmission Matrix `. #. See :ref:`Scattering Matrix `. #. See `this site `__ for more information about :math:`S`-parameters. #. See this `Wikipedia page `__ for more information about :math:`S`-parameters. .. TODO: find link TODO: make laws for the S-parameters, see second link above. .. py:currentmodule:: symplyphysics.laws.electricity.circuits.transmission_lines.scattering_matrix_to_transmission_matrix .. py:data:: voltage_voltage_parameter Ratio of input :attr:`~symplyphysics.symbols.electrodynamics.voltage` to output :attr:`~symplyphysics.symbols.electrodynamics.voltage` at idle at the output. Symbol: :code:`A` Latex: :math:`A` Dimension: :code:`dimensionless` .. py:data:: voltage_current_parameter Ratio of input :attr:`~symplyphysics.symbols.electrodynamics.voltage` to output :attr:`~symplyphysics.symbols.electrodynamics.current` in case of a short circuit at the output. Symbol: :code:`B` Latex: :math:`B` Dimension: :code:`impedance` .. py:data:: current_voltage_parameter Ratio of input :attr:`~symplyphysics.symbols.electrodynamics.current` to output :attr:`~symplyphysics.symbols.electrodynamics.voltage` at idle at the output. Symbol: :code:`C` Latex: :math:`C` Dimension: :code:`conductance` .. py:data:: current_current_parameter Ratio of input :attr:`~symplyphysics.symbols.electrodynamics.current` to output :attr:`~symplyphysics.symbols.electrodynamics.current` in case of a short circuit at the output. Symbol: :code:`D` Latex: :math:`D` Dimension: :code:`dimensionless` .. py:data:: surge_impedance :attr:`~symplyphysics.symbols.electrodynamics.surge_impedance`. Symbol: :code:`Z_S` Latex: :math:`Z_\text{S}` Dimension: :code:`impedance` .. py:data:: input_voltage_reflection_coefficient Input port :attr:`~symplyphysics.symbols.electrodynamics.voltage` :attr:`~symplyphysics.symbols.electrodynamics.reflection_coefficient`. Symbol: :code:`S_ii` Latex: :math:`S_\text{ii}` Dimension: :code:`dimensionless` .. py:data:: reverse_voltage_gain Reverse :attr:`~symplyphysics.symbols.electrodynamics.voltage` :attr:`~symplyphysics.symbols.electrodynamics.circuit_gain`. Symbol: :code:`S_io` Latex: :math:`S_\text{io}` Dimension: :code:`dimensionless` .. py:data:: forward_voltage_gain Forward :attr:`~symplyphysics.symbols.electrodynamics.voltage` :attr:`~symplyphysics.symbols.electrodynamics.circuit_gain`. Symbol: :code:`S_oi` Latex: :math:`S_\text{oi}` Dimension: :code:`dimensionless` .. py:data:: output_voltage_reflection_coefficient Output port :attr:`~symplyphysics.symbols.electrodynamics.voltage` :attr:`~symplyphysics.symbols.electrodynamics.reflection_coefficient`. Symbol: :code:`S_oo` Latex: :math:`S_\text{oo}` Dimension: :code:`dimensionless` .. py:data:: law :code:`[[A, B], [C, D]] = [[((1 + S_ii) * (1 - S_oo) + S_io * S_oi) / (2 * S_oi), Z_S * ((1 + S_ii) * (1 + S_oo) - S_io * S_oi) / (2 * S_oi)], [((1 - S_ii) * (1 - S_oo) - S_io * S_oi) / Z_S / (2 * S_oi), ((1 - S_ii) * (1 + S_oo) + S_io * S_oi) / (2 * S_oi)]]` Latex: .. math:: \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{\left(1 + S_\text{ii}\right) \left(1 - S_\text{oo}\right) + S_\text{io} S_\text{oi}}{2 S_\text{oi}} & \frac{Z_\text{S} \left(\left(1 + S_\text{ii}\right) \left(1 + S_\text{oo}\right) - S_\text{io} S_\text{oi}\right)}{2 S_\text{oi}} \\ \frac{\left(1 - S_\text{ii}\right) \left(1 - S_\text{oo}\right) - S_\text{io} S_\text{oi}}{Z_\text{S}} \frac{1}{2 S_\text{oi}} & \frac{\left(1 - S_\text{ii}\right) \left(1 + S_\text{oo}\right) + S_\text{io} S_\text{oi}}{2 S_\text{oi}} \end{pmatrix}