Kinetic energy via angular momentum and angular velocity¶
Kinetic energy of a body rotating around a fixed or instantaneous axis depends on its angular momentum and angular velocity.
- kinetic_energy_law(angular_momentum_, angular_velocity_)[source]¶
Kinetic energy of a rotating body.
Notation:
\(\left(\vec a, \vec b \right)\) (
dot(a, b)
) is the dot product between vectors \(\vec a\) and \(\vec b\).
- Law:
K = 1/2 * dot(L, w)
- Latex:
\(K = \frac{1}{2} \left(\vec L, \vec \omega \right)\)
- Parameters:
angular_momentum_ –
angular momentum of the body.
Symbol:
L
Latex: \(\vec L\)
Dimension: length * momentum
angular_velocity_ –
angular velocity of the body.
Symbol:
w
Latex: \(\vec \omega\)
Dimension: angle / time
- Returns:
kinetic energy of the body
Symbol:
K
Dimension: energy