Kinetic energy via angular momentum and angular velocity

Kinetic energy of a body rotating around a fixed or instantaneous axis depends on its angular momentum and angular velocity.

kinetic_energy_law(angular_momentum_, angular_velocity_)[source]

Kinetic energy of a rotating body.

Notation:

  1. \(\left(\vec a, \vec b \right)\) (dot(a, b)) is the dot product between vectors \(\vec a\) and \(\vec b\).

Law:

K = 1/2 * dot(L, w)

Latex:

\(K = \frac{1}{2} \left(\vec L, \vec \omega \right)\)

Parameters:
  • angular_momentum_

    angular momentum of the body.

    Symbol: L

    Latex: \(\vec L\)

    Dimension: length * momentum

  • angular_velocity_

    angular velocity of the body.

    Symbol: w

    Latex: \(\vec \omega\)

    Dimension: angle / time

Returns:

kinetic energy of the body

Symbol: K

Dimension: energy