Dot product is proportional to cosine of angle between vectors (vector) ======================================================================= The dot product of two vectors is a scalar binary operation that can be defined as the product of the norms of the vectors and the cosine of the angle between them. Also see the :ref:`scalar law `. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.mathematics.geometry.dot_product_is_proportional_to_cosine_between_vectors .. py:data:: first_vector First vector. Symbol: :code:`u` Latex: :math:`{\vec u}` Dimension: :code:`any_dimension` .. py:data:: second_vector Second vector. Symbol: :code:`v` Latex: :math:`{\vec v}` Dimension: :code:`any_dimension` .. py:data:: angle_between_vectors :attr:`~symplyphysics.symbols.basic.angle` between :attr:`~first_vector` and :attr:`~second_vector`. Symbol: :code:`phi` Latex: :math:`\varphi` Dimension: :code:`angle` .. py:data:: law :code:`dot(u, v) = norm(u) * norm(v) * cos(phi)` Latex: .. math:: \left( {\vec u}, {\vec v} \right) = \left \Vert {\vec u} \right \Vert \left \Vert {\vec v} \right \Vert \cos{\left(\varphi \right)}