Resonant frequencies of stretched string with fixed ends ======================================================== For a string with fixed ends there is only a limited set of frequencies at which standing waves will occur on it. Each possible frequency is a resonant frequency, and the corresponding wave pattern is an oscillation mode. The oscillation mode corresponding to :math:`N = 1` is called the fundamental mode or the first harmonic, the mode corresponding to :math:`N = 2` is the second harmonic, and so on. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.waves.resonant_frequencies_of_stretched_string_with_fixed_ends .. py:data:: resonant_frequency Resonant frequency of the :math:`m`-th harmonic. See :attr:`~symplyphysics.symbols.classical_mechanics.temporal_frequency`. Symbol: :code:`f` Latex: :math:`f` Dimension: :code:`frequency` .. py:data:: harmonic_number An integer called harmonic number. See :attr:`~symplyphysics.symbols.basic.positive_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: phase_velocity :attr:`~symplyphysics.symbols.classical_mechanics.phase_speed` of the wave. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`velocity` .. py:data:: string_length :attr:`~symplyphysics.symbols.classical_mechanics.length` of the string. Symbol: :code:`l` Latex: :math:`l` Dimension: :code:`length` .. py:data:: law :code:`f = N * v / (2 * l)` Latex: .. math:: f = \frac{N v}{2 l}