Light frequency change is proportional to gravitational potential change ======================================================================== When light is propagating in a gravitational field, its frequency changes proportionally to the change in the potential of the gravitational field. Let us consider an infinitesimally small section :math:`d \vec r` of the light's path, such that the frequency of light is constant within that section. In that case we can obtain a dependency between the change in light's frequency and the change in the gravitational potential. **Notes:** .. _gravitational potential: #. The *gravitational potential* :math:`\varphi` is defined as a scalar quantity such that the equation :math:`\vec g = - \nabla \varphi` holds where :math:`\vec g` is the vector of acceleration due to gravity and :math:`\nabla` is the nabla operator. #. :math:`d \varphi = - \left( \vec g, d \vec r \right)` where :math:`\left( \vec a_1, \vec a_2 \right)` is the dot product between :math:`\vec a_1` and :math:`\vec a_2`. **Links:** #. Formula 72.4 on p. 378 of "General Course of Physics" (Obschiy kurs fiziki), vol. 1 by Sivukhin D.V. (1979). .. py:currentmodule:: symplyphysics.laws.waves.light_frequency_change_is_proportional_to_gravitational_potential_change .. py:data:: frequency_change The infinitesimal change in :attr:`~symplyphysics.symbols.classical_mechanics.temporal_frequency` after passing an infinitesimal section :math:`d \vec r`. Symbol: :code:`d(f)` Latex: :math:`df` Dimension: :code:`frequency` .. py:data:: frequency The :attr:`~symplyphysics.symbols.classical_mechanics.temporal_frequency` of light within an infinitesimal section :math:`d \vec r`. Symbol: :code:`f` Latex: :math:`f` Dimension: :code:`frequency` .. py:data:: gravitational_potential_change The infinitesimal change in :ref:`gravitational potential ` after passing an infinitesimal section :math:`d \vec r`. Symbol: :code:`d(phi)` Latex: :math:`d \phi` Dimension: :code:`velocity**2` .. py:data:: law :code:`d(f) / f = -d(phi) / c^2` Latex: .. math:: \frac{df}{f} = - \frac{d \phi}{c^{2}}