Displacement in standing wave ============================= A *standing*, or *stationary*, *wave* is the result of the interference of two identical waves moving in opposite directions. **Notes:** #. In this law we assume the standing wave to be composed of two identical traveling sinusoidal waves of the form :math:`u_\text{max} \sin(k x \pm \omega t)` #. A standing wave is no longer a traveling one because it doesn't move in a single direction. **Links:** #. `Physics LibreTexts, similar to formula 14.7.3 `__. .. py:currentmodule:: symplyphysics.laws.waves.displacement_in_standing_wave .. py:data:: total_displacement Displacement of the resulting wave. Symbol: :code:`u` Latex: :math:`u` .. py:data:: amplitude Amplitude of the interfering waves. Symbol: :code:`u_max` Latex: :math:`u_\text{max}` .. py:data:: angular_wavenumber :attr:`~symplyphysics.symbols.classical_mechanics.angular_wavenumber` of the interfering waves. Symbol: :code:`k` Latex: :math:`k` Dimension: :code:`angle/length` .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`, or spatial coordinate. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the interfering waves. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: law :code:`u = 2 * u_max * sin(k * x) * cos(w * t)` Latex: .. math:: u = 2 u_\text{max} \sin(k x) \cos(\omega t)