Spectral energy density at all frequencies ========================================== *Planck's radiation law* describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature when there is no net flow of matter or energy between the body and its environment. **Notation:** #. :math:`h` (:code:`h`) is :attr:`~symplyphysics.quantities.planck`. #. :math:`c` (:code:`c`) is :attr:`~symplyphysics.quantities.speed_of_light`. #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Conditions:** #. The black body is isolated from the environment. **Links:** #. `Wikipedia <https://en.wikipedia.org/wiki/Planck%27s_law>`__. .. py:currentmodule:: symplyphysics.laws.waves.blackbody_radiation.spectral_energy_density_at_all_frequencies .. py:data:: spectral_energy_density :attr:`~symplyphysics.symbols.basic.spectral_energy_density`. Symbol: :code:`w_f` Latex: :math:`w_{f}` Dimension: :code:`energy/(frequency*volume)` .. py:data:: radiation_frequency :attr:`~symplyphysics.symbols.classical_mechanics.temporal_frequency` of the radiation. Symbol: :code:`f` Latex: :math:`f` Dimension: :code:`frequency` .. py:data:: equilibrium_temperature Equilibrium :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the ensemble. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: law :code:`w_f = 8 * pi * h * f^3 / c^3 / (exp(h * f / (k_B * T)) - 1)` Latex: .. math:: w_{f} = \frac{8 \pi h f^{3}}{c^{3}} \frac{1}{\exp{\left(\frac{h f}{k_\text{B} T} \right)} - 1}