Temperature is derivative of internal energy ============================================ Temperature of a thermodynamic system can be found when internal energy is known as a function of entropy. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.temperature_is_derivative_of_internal_energy .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: entropy :attr:`~symplyphysics.symbols.thermodynamics.entropy` of the system. Symbol: :code:`S` Latex: :math:`S` Dimension: :code:`energy/temperature` .. py:data:: volume :attr:`~symplyphysics.symbols.classical_mechanics.volume` of the system. Symbol: :code:`V` Latex: :math:`V` Dimension: :code:`volume` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: internal_energy :attr:`~symplyphysics.symbols.thermodynamics.internal_energy` of the system as a function of its natural variables. Symbol: :code:`U(S, V, N)` Latex: :math:`U{\left(S,V,N \right)}` Dimension: :code:`energy` .. py:data:: law :code:`T = Derivative(U(S, V, N), S)` Latex: .. math:: T = \frac{\partial}{\partial S} U{\left(S,V,N \right)}