Prandtl number via dynamic viscosity and thermal conductivity ============================================================= *Prandtl number* is a dimensionless quantity defined as the ratio of kinetic viscosity (momentum diffusivity) to thermal diffusivity. It can also be expressed using dynamic viscosity and thermal conductivity. **Links:** #. `Wikipedia, last formula within the box `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.prandtl_number_via_dynamic_viscosity_and_thermal_conductivity .. py:data:: prandtl_number :attr:`~symplyphysics.symbols.thermodynamics.prandtl_number` of the fluid. Symbol: :code:`Pr` Latex: :math:`\text{Pr}` Dimension: :code:`dimensionless` .. py:data:: isobaric_specific_heat_capacity :attr:`~symplyphysics.symbols.thermodynamics.heat_capacity` at constant :attr:`~symplyphysics.symbols.classical_mechanics.pressure` per unit :attr:`~symplyphysics.symbols.basic.mass`. Symbol: :code:`c_p` Latex: :math:`c_{p}` Dimension: :code:`energy/(mass*temperature)` .. py:data:: dynamic_viscosity :attr:`~symplyphysics.symbols.classical_mechanics.dynamic_viscosity` of the fluid. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`pressure*time` .. py:data:: thermal_conductivity :attr:`~symplyphysics.symbols.thermodynamics.thermal_conductivity` of the fluid. Symbol: :code:`k` Latex: :math:`k` Dimension: :code:`power/(length*temperature)` .. py:data:: law :code:`Pr = c_p * mu / k` Latex: .. math:: \text{Pr} = \frac{c_{p} \mu}{k}