Speed distribution ================== For a system containing a large number of identical non-interacting non-relativistic classical particles in thermodynamic equilibrium, the speed distribution function is a function such that :math:`f(v) dv` gives the fraction of particles with speeds in the interval :math:`dv` at speed :math:`v`. **Notation:** #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Notes:** #. Number of particles is big enough that the laws of thermodynamics can be applied. #. Particles are identical, non-interacting, non-relativistic, and classical. #. The ensemble of particles is at thermodynamic equilibrium. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.maxwell_boltzmann_statistics.speed_distribution .. py:data:: speed_distribution_function :attr:`~symplyphysics.symbols.classical_mechanics.speed` distribution function. Symbol: :code:`f(v)` Latex: :math:`f(v)` Dimension: :code:`1/velocity` .. py:data:: particle_speed Particle :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`velocity` .. py:data:: particle_mass :attr:`~symplyphysics.symbols.basic.mass` of a particle. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: equilibrium_temperature Equilibrium :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the ensemble. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: law :code:`f(v) = sqrt(2 / pi) * (m / (k_B * T))^(3/2) * v^2 * exp(-m * v^2 / (2 * k_B * T))` Latex: .. math:: f(v) = \sqrt{\frac{2}{\pi}} \left(\frac{m}{k_\text{B} T}\right)^{\frac{3}{2}} v^{2} \exp{\left(- \frac{m v^{2}}{2 k_\text{B} T} \right)}