Discrete distribution ===================== Maxwell—Boltzmann distribution can be written as a discrete distribution of a single particle's discrete energy spectrum. Maxwell-Boltzmann statistics gives the average number of particles found in a given single-particle microstate. **Notation:** #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Conditions:** #. Particles do not interact and are classical. #. The system is in thermal equilibrium. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.maxwell_boltzmann_statistics.single_particle_discrete_distribution .. py:data:: occupancy_of_state Occupancy of, or expected number of particles in, the single-particle microstate :math:`i`. Symbol: :code:`N_i` Latex: :math:`N_{i}` Dimension: :code:`dimensionless` .. py:data:: particle_count Total :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: energy_of_state :attr:`~symplyphysics.symbols.basic.energy` of single-particle microstate :math:`i`. Symbol: :code:`E_i` Latex: :math:`E_{i}` Dimension: :code:`energy` .. py:data:: equilibrium_temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: single_particle_partition_function Single-particle :attr:`~symplyphysics.symbols.thermodynamics.partition_function`, which acts as a normalizing factor of the distribution. Symbol: :code:`Z` Latex: :math:`Z` Dimension: :code:`dimensionless` .. py:data:: law :code:`N_i = N / Z * exp(-E_i / (k_B * T))` Latex: .. math:: N_{i} = \frac{N}{Z} \exp{\left(- \frac{E_{i}}{k_\text{B} T} \right)}