Energy distribution =================== For a system containing a large number of identical non-interacting non-relativistic classical particles in thermodynamic equilibrium, the energy distribution function is a function such that :math:`f(E) dE` gives the fraction of particles with energies in the interval :math:`dE` around energy value :math:`E`. **Notation:** #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Notes:** #. Number of particles is big enough that the laws of thermodynamics can be applied. #. Particles are identical, non-interacting, non-relativistic, and classical. #. The ensemble of particles is at thermodynamic equilibrium. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.maxwell_boltzmann_statistics.energy_distribution .. py:data:: energy :attr:`~symplyphysics.symbols.basic.energy` of the ensemble. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: energy_distribution_function :attr:`~energy` distribution function. Symbol: :code:`f(E)` Latex: :math:`f(E)` Dimension: :code:`1/energy` .. py:data:: equilibrium_temperature Equilibrium :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the ensemble. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: law :code:`f(E) = 2 * sqrt(E / pi) / (T^(3/2) * k_B^(3/2)) * exp(-E / (k_B * T))` Latex: .. math:: f(E) = \frac{2 \sqrt{\frac{E}{\pi}}}{T^{\frac{3}{2}} k_\text{B}^{\frac{3}{2}}} \exp{\left(- \frac{E}{k_\text{B} T} \right)}