General equation in one dimension ================================= Heat equation governs heat diffusion, as well as other diffusive processes. It describes the evolution of heat transferred from hotter to colder environments in time and space. **Notes:** #. There is no straghtforward solution to this equation, and it depends on initial conditions as well. #. To get a similar equation for the 3-dimensional case, replace the spatial derivative with gradient :math:`\nabla`. #. Thermal conductivity :math:`k` can depend not only on position, but also on local temperature, but this is out of the scope of this law. **Links:** #. `Wikipedia <https://en.wikipedia.org/wiki/Heat_equation#Non-uniform_isotropic_medium>`__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.heat_transfer.general_equation_in_one_dimension .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`, or spatial variable. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` as a function of :attr:`~position` and :attr:`~time`. Symbol: :code:`T(x, t)` Latex: :math:`T{\left(x,t \right)}` Dimension: :code:`temperature` .. py:data:: medium_density :attr:`~symplyphysics.symbols.basic.density` of the medium. Symbol: :code:`rho` Latex: :math:`\rho` Dimension: :code:`mass/volume` .. py:data:: medium_specific_isobaric_heat_capacity :attr:`~symplyphysics.symbols.thermodynamics.heat_capacity` of the medium at constant :attr:`~symplyphysics.symbols.classical_mechanics.pressure` per unit :attr:`~symplyphysics.symbols.basic.mass`. Symbol: :code:`c_p` Latex: :math:`c_{p}` Dimension: :code:`energy/(mass*temperature)` .. py:data:: thermal_conductivity :attr:`~symplyphysics.symbols.thermodynamics.thermal_conductivity` of the medium as a function of :attr:`~position`. Symbol: :code:`k(x)` Latex: :math:`k{\left(x \right)}` Dimension: :code:`power/(length*temperature)` .. py:data:: heat_source_density Density of the rate of heat production by external sources as a function of :attr:`~position` and :attr:`~time`. See :attr:`~symplyphysics.symbols.basic.energy_density`. Symbol: :code:`q(x, t)` Latex: :math:`q{\left(x,t \right)}` Dimension: :code:`energy/volume` .. py:data:: law :code:`rho * c_p * Derivative(T(x, t), t) = Derivative(k(x) * Derivative(T(x, t), x), x) + q(x, t)` Latex: .. math:: \rho c_{p} \frac{\partial}{\partial t} T{\left(x,t \right)} = \frac{\partial}{\partial x} k{\left(x \right)} \frac{\partial}{\partial x} T{\left(x,t \right)} + q{\left(x,t \right)}