Equation in homogeneous medium in one dimension =============================================== Heat equation governs heat diffusion, as well as other diffusive processes. It describes the evolution of heat transferred from hotter to colder environments in time and space. **Notes:** #. There is no straghtforward solution to this equation, and it depends on initial conditions as well. **Conditions:** #. There are no heat sources in the system, i.e. the heat distribution only depends on the initial conditions. #. Thermal diffusivity :math:`\chi` does not depend on position. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.heat_transfer.equation_in_homogeneous_medium_in_one_dimension .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`, or spatial variable. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: temperature Temperature as a function of :attr:`~position` and :attr:`~time`. Symbol: :code:`T(x, t)` Latex: :math:`T{\left(x,t \right)}` Dimension: :code:`temperature` .. py:data:: thermal_diffusivity :attr:`~symplyphysics.symbols.thermodynamics.thermal_diffusivity`. Symbol: :code:`alpha` Latex: :math:`\alpha` Dimension: :code:`area/time` .. py:data:: law :code:`Derivative(T(x, t), t) = alpha * Derivative(T(x, t), (x, 2))` Latex: .. math:: \frac{\partial}{\partial t} T{\left(x,t \right)} = \alpha \frac{\partial^{2}}{\partial x^{2}} T{\left(x,t \right)}