Grashof number ============== The Grashof number (Gr) is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It arises in situations involving natural convection and is analogous to the Reynolds number. **Notation:** #. :math:`g` (:code:`g`) is :attr:`~symplyphysics.quantities.acceleration_due_to_gravity`. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.grashof_number .. py:data:: grashof_number :attr:`~symplyphysics.symbols.thermodynamics.grashof_number` of the fluid. Symbol: :code:`Gr` Latex: :math:`\text{Gr}` Dimension: :code:`dimensionless` .. py:data:: volumetric_expansion_coefficient Volumetric (see :attr:`~symplyphysics.symbols.classical_mechanics.volume`) :attr:`~symplyphysics.symbols.thermodynamics.thermal_expansion_coefficient` of the body. Symbol: :code:`alpha_V` Latex: :math:`\alpha_{V}` Dimension: :code:`1/temperature` .. py:data:: surface_temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the surface of the fluid. Symbol: :code:`T_s` Latex: :math:`T_\text{s}` Dimension: :code:`temperature` .. py:data:: bulk_temperature Average :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the inside of the fluid. Symbol: :code:`T_b` Latex: :math:`T_\text{b}` Dimension: :code:`temperature` .. py:data:: characteristic_length :attr:`~symplyphysics.symbols.basic.characteristic_length` of the fluid body. Symbol: :code:`l_c` Latex: :math:`l_\text{c}` Dimension: :code:`length` .. py:data:: kinematic_viscosity :attr:`~symplyphysics.symbols.thermodynamics.kinematic_viscosity` of the fluid. Symbol: :code:`nu` Latex: :math:`\nu` Dimension: :code:`area/time` .. py:data:: law :code:`Gr = g * alpha_V * (T_s - T_b) * l_c^3 / nu^2` Latex: .. math:: \text{Gr} = \frac{g \alpha_{V} \left(T_\text{s} - T_\text{b}\right) l_\text{c}^{3}}{\nu^{2}}