Single-particle state distribution ================================== For a system of identical fermions in thermodynamic equilibrium, the average number of fermions in a single-particle state :math:`i` is given by the Fermi—Dirac distribution. **Notation:** #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Notes:** #. If the energy states are degenerate, i.e. two or more particles are on the same energy level, the average number of fermions can be found by multiplying by the degeneracy :math:`g_i` of the energy level. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.fermi_dirac_statistics.single_particle_state_distribution .. py:data:: occupancy_of_state Occupancy of a single-particle state :math:`i`. Symbol: :code:`N_i` Latex: :math:`N_{i}` Dimension: :code:`dimensionless` .. py:data:: energy_of_state :attr:`~symplyphysics.symbols.basic.energy` of state :math:`i`. Symbol: :code:`E_i` Latex: :math:`E_{i}` Dimension: :code:`energy` .. py:data:: total_chemical_potential Total :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: law :code:`N_i = 1 / (exp((E_i - mu) / (k_B * T)) + 1)` Latex: .. math:: N_{i} = \frac{1}{\exp{\left(\frac{E_{i} - \mu}{k_\text{B} T} \right)} + 1}