Internal energy formula ======================= The formula of the internal energy differential can be integrated using the Euler's theorem on homogeneous functions to get the following expression. **Notes:** #. This formula works for a single-component system. For a multi-component system replace the product of chemical potential and particle count with a sum over each type of components. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.euler_relations.internal_energy_formula .. py:data:: internal_energy :attr:`~symplyphysics.symbols.thermodynamics.internal_energy` of the system. Symbol: :code:`U` Latex: :math:`U` Dimension: :code:`energy` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: entropy :attr:`~symplyphysics.symbols.thermodynamics.entropy` of the system. Symbol: :code:`S` Latex: :math:`S` Dimension: :code:`energy/temperature` .. py:data:: pressure :attr:`~symplyphysics.symbols.classical_mechanics.pressure` in the system. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`pressure` .. py:data:: volume :attr:`~symplyphysics.symbols.classical_mechanics.volume` of the system. Symbol: :code:`V` Latex: :math:`V` Dimension: :code:`volume` .. py:data:: chemical_potential :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: law :code:`U = T * S - p * V + mu * N` Latex: .. math:: U = T S - p V + \mu N