Gibbs energy formula ==================== Gibbs energy differential cannot be integrated directly using the Euler's theorem on homogeneous functions but it can be derived via its definition and the relation for internal energy. **Notes:** #. This formula works for a single-component system. For a multi-component system replace the right-hand side with a sum over each type of components. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.euler_relations.gibbs_energy_formula .. py:data:: gibbs_energy :attr:`~symplyphysics.symbols.thermodynamics.gibbs_energy` of the system. Symbol: :code:`G` Latex: :math:`G` Dimension: :code:`energy` .. py:data:: chemical_potential :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: law :code:`G = mu * N` Latex: .. math:: G = \mu N