Enthalpy formula ================ The enthalpy differential can be integrated using the Euler's theorem on homogeneous functions for internal energy. **Notes:** #. This formula works for a single-component system. For a multi-component system replace the product of chemical potential and particle count with a sum over each type of components. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.euler_relations.enthalpy_formula .. py:data:: enthalpy :attr:`~symplyphysics.symbols.thermodynamics.enthalpy` of the system. Also see :doc:`laws.thermodynamics.enthalpy_is_internal_energy_plus_pressure_energy`. Symbol: :code:`H` Latex: :math:`H` Dimension: :code:`energy` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: entropy :attr:`~symplyphysics.symbols.thermodynamics.entropy` of the system. Also see :doc:`laws.thermodynamics.entropy_change_in_reversible_process`. Symbol: :code:`S` Latex: :math:`S` Dimension: :code:`energy/temperature` .. py:data:: chemical_potential :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Also see :doc:`laws.thermodynamics.chemical_potential_is_particle_count_derivative_of_internal_energy`. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: law :code:`H = T * S + mu * N` Latex: .. math:: H = T S + \mu N