Molar internal energy ===================== If the equation of state is known, the internal energy of a substance can be found as a function of volume at constant temperature. **Conditions:** #. The fluid is homogeneous and in a single phase state. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.equations_of_state.van_der_waals.molar_internal_energy .. py:data:: molar_internal_energy :attr:`~symplyphysics.symbols.thermodynamics.internal_energy` of the van der Waals fluid per unit :attr:`~symplyphysics.symbols.chemistry.amount_of_substance`. Symbol: :code:`u_m` Latex: :math:`u_\text{m}` Dimension: :code:`energy/amount_of_substance` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the van der Waals fluid. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: isochoric_molar_heat_capacity :attr:`~symplyphysics.symbols.thermodynamics.molar_heat_capacity` at constant :attr:`~symplyphysics.symbols.classical_mechanics.volume` as a function of :attr:`~temperature`. Symbol: :code:`c_Vm(T)` Latex: :math:`c_{V, \text{m}}{\left(T \right)}` Dimension: :code:`energy/(amount_of_substance*temperature)` .. py:data:: attractive_forces_parameter :attr:`~symplyphysics.symbols.thermodynamics.attractive_forces_parameter`. Symbol: :code:`a` Latex: :math:`a` Dimension: :code:`pressure*volume**2/amount_of_substance**2` .. py:data:: molar_volume :attr:`~symplyphysics.symbols.basic.molar_volume`. Symbol: :code:`v_m` Latex: :math:`v_\text{m}` Dimension: :code:`volume/amount_of_substance` .. py:data:: law :code:`u_m = Integral(c_Vm(T), T) - a / v_m` Latex: .. math:: u_\text{m} = \int c_{V, \text{m}}{\left(T \right)}\, dT - \frac{a}{v_\text{m}}