Dimensionless equation ====================== The *dimensionless form* of the van der Waals equation of state features :ref:`reduced quantities `. One notable property of the dimensionless equation of state is that it contains no substance-specific quantities, i.e. all van der Waals fluids will plot on the same reduced pressure-volume curve at the same reduced temperature. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.equations_of_state.van_der_waals.dimensionless_equation .. py:data:: reduced_pressure See :doc:`laws.thermodynamics.equations_of_state.van_der_waals.reduced_pressure`. Symbol: :code:`p_r` Latex: :math:`p_{r}` Dimension: :code:`dimensionless` .. py:data:: reduced_volume See :doc:`laws.thermodynamics.equations_of_state.van_der_waals.reduced_volume`. Symbol: :code:`V_r` Latex: :math:`V_{r}` Dimension: :code:`dimensionless` .. py:data:: reduced_temperature See :doc:`laws.thermodynamics.equations_of_state.van_der_waals.reduced_temperature`. Symbol: :code:`T_r` Latex: :math:`T_{r}` Dimension: :code:`dimensionless` .. py:data:: law :code:`(p_r + 3 / V_r^2) * (V_r - 1/3) = 8 * T_r / 3` Latex: .. math:: \left(p_{r} + \frac{3}{V_{r}^{2}}\right) \left(V_{r} - \frac{1}{3}\right) = \frac{8 T_{r}}{3}