Dieterici equation ================== *Dieterici equation* is another type of semi-empirical equations approximating real gases along with the more well-known van der Waals equation of state. **Notation:** #. :math:`R` (:code:`R`) is :attr:`~symplyphysics.quantities.molar_gas_constant`. **Notes:** #. Like the van der Waals equation of state, the Dieterici equation is semi-empirical. #. It approximates moderate pressures of real gases much better than the van der Waals equation within the conditions stated below. #. Can be converted to the van der Waals equation under an additional limit :math:`a \ll R T V_m`. **Conditions:** #. Only applicable in the limits :math:`b \ll V_m` and :math:`a \ll p V_m^2`. Refer to symbols below. #. Inapplicable for high pressures. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.equations_of_state.dieterici_equation .. py:data:: pressure :attr:`~symplyphysics.symbols.classical_mechanics.pressure` inside the system. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`pressure` .. py:data:: molar_volume :attr:`~symplyphysics.symbols.classical_mechanics.volume` of the system per :attr:`~symplyphysics.symbols.chemistry.amount_of_substance`. Symbol: :code:`V_m` Latex: :math:`V_{m}` Dimension: :code:`volume/amount_of_substance` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: attractive_forces_parameter :attr:`~symplyphysics.symbols.thermodynamics.attractive_forces_parameter`. Symbol: :code:`a` Latex: :math:`a` Dimension: :code:`pressure*volume**2/amount_of_substance**2` .. py:data:: excluded_volume_parameter :attr:`~symplyphysics.symbols.thermodynamics.excluded_volume_parameter`. Symbol: :code:`b` Latex: :math:`b` Dimension: :code:`volume/amount_of_substance` .. py:data:: law :code:`p * (V_m - b) = R * T * exp(-a / (R * T * V_m))` Latex: .. math:: p \left(V_{m} - b\right) = R T \exp{\left(- \frac{a}{R T V_{m}} \right)}