Entropy is derivative of Gibbs energy ===================================== Entropy of a system can be found if its Gibbs energy is known as a function of temperature. **Links:** #. `Wikipedia, follows from the corresponding fundamental relation `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.entropy_is_derivative_of_gibbs_energy .. py:data:: entropy :attr:`~symplyphysics.symbols.thermodynamics.entropy` of the system. Symbol: :code:`S` Latex: :math:`S` Dimension: :code:`energy/temperature` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: pressure :attr:`~symplyphysics.symbols.classical_mechanics.pressure` inside the system. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`pressure` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: gibbs_energy :attr:`~symplyphysics.symbols.thermodynamics.gibbs_energy` of the system as a function of :attr:`~temperature`, :attr:`~pressure`, and :attr:`~particle_count`. Symbol: :code:`G(T, p, N)` Latex: :math:`G{\left(T,p,N \right)}` Dimension: :code:`energy` .. py:data:: law :code:`S = -Derivative(G(T, p, N), T)` Latex: .. math:: S = - \frac{\partial}{\partial T} G{\left(T,p,N \right)}