Diffusion flux from diffusion coefficient and concentration gradient ==================================================================== *Fick's first law* relates the diffusion flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or, in simplistic terms, the concept that a solute will move from a region of high concentration to a region of low concentration across a concentration gradient. The minus sign in the law indicates that the directions of the diffusion flow and the gradient are opposite: the gas diffuses towards a lower concentration, and the gradient is directed towards a higher concentration. **Conditions:** #. The mixture is ideal. **Links:** #. `Wikipedia, first formula `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.diffusion_flux_from_diffusion_coefficient_and_concentration_gradient .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position` of particles. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: diffusion_flux :attr:`~symplyphysics.symbols.classical_mechanics.diffusion_flux` as a function of :attr:`~position`. Symbol: :code:`J(x)` Latex: :math:`J{\left(x \right)}` Dimension: :code:`amount_of_substance/(area*time)` .. py:data:: diffusion_coefficient :attr:`~symplyphysics.symbols.classical_mechanics.diffusion_coefficient`. Symbol: :code:`D` Latex: :math:`D` Dimension: :code:`area/time` .. py:data:: concentration :attr:`~symplyphysics.symbols.chemistry.molar_concentration` of particles as a function of :attr:`~position`. Symbol: :code:`c(x)` Latex: :math:`c{\left(x \right)}` Dimension: :code:`amount_of_substance/volume` .. py:data:: law :code:`J(x) = -D * Derivative(c(x), x)` Latex: .. math:: J{\left(x \right)} = - D \frac{d}{d x} c{\left(x \right)}