Gibbs energy of dielectrics =========================== Gibbs energy of the system with a dielectric medium can be expressed using the Helmholtz free energy and the electric displacement and field strength. **Conditions:** #. The dielectric is isotropic whether or not the electric field is present. #. The medium is homogeneous. #. The volume change of the medium is insignificant. **Links:** #. Formula 31.4 on p. 122 of "General Course of Physics" (Obschiy kurs fiziki), vol. 3 by Sivukhin D.V. (1979). .. py:currentmodule:: symplyphysics.laws.thermodynamics.dielectrics.gibbs_energy_formula .. py:data:: gibbs_energy_density :attr:`~symplyphysics.symbols.thermodynamics.gibbs_energy` of the system per unit :attr:`~symplyphysics.symbols.classical_mechanics.volume`. Symbol: :code:`G` Latex: :math:`G` Dimension: :code:`energy/volume` .. py:data:: free_energy_density :attr:`~symplyphysics.symbols.thermodynamics.helmholtz_free_energy` of the system per units :attr:`~symplyphysics.symbols.classical_mechanics.volume`. Symbol: :code:`F` Latex: :math:`F` Dimension: :code:`energy/volume` .. py:data:: electric_field_strength :attr:`~symplyphysics.symbols.electrodynamics.electric_field_strength` in the medium. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`voltage/length` .. py:data:: electric_displacement :attr:`~symplyphysics.symbols.electrodynamics.electric_displacement` in the medium. Symbol: :code:`D` Latex: :math:`D` Dimension: :code:`charge/area` .. py:data:: law :code:`G = F - E * D` Latex: .. math:: G = F - E D