Chemical potential of ideal gas =============================== The chemical potential of an ideal gas can be calculated from its temperature, concentration, and thermal wavelength. **Notation:** #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Conditions:** #. The gas is ideal. **Links:** #. Formula on p. 394 of "Statistical Mechanics" by Terrent L. Hill (1987) .. py:currentmodule:: symplyphysics.laws.thermodynamics.chemical_potential_of_ideal_gas .. py:data:: chemical_potential :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of ideal gas. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the gas. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: concentration Concentration of the gas, or :attr:`~symplyphysics.symbols.basic.number_density`. Symbol: :code:`n` Latex: :math:`n` Dimension: :code:`1/volume` .. py:data:: thermal_wavelength :attr:`~symplyphysics.symbols.thermodynamics.thermal_wavelength` of the gas. Also see :doc:`Thermal de Broglie wavelength `. Symbol: :code:`lambda` Latex: :math:`\lambda` Dimension: :code:`length` .. py:data:: law :code:`mu = k_B * T * log(n * lambda^3)` Latex: .. math:: \mu = k_\text{B} T \log \left( n \lambda^{3} \right)