Chemical potential is particle count derivative of internal energy ================================================================== The chemical potential of a system is the amount of energy the system absorbs or releases due to the introduction of a particle into the system, i.e. when the particle count increases by one. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.chemical_potential_is_particle_count_derivative_of_internal_energy .. py:data:: chemical_potential :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: entropy :attr:`~symplyphysics.symbols.thermodynamics.entropy` of the system. Symbol: :code:`S` Latex: :math:`S` Dimension: :code:`energy/temperature` .. py:data:: volume :attr:`~symplyphysics.symbols.classical_mechanics.volume` of the system. Symbol: :code:`V` Latex: :math:`V` Dimension: :code:`volume` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: internal_energy :attr:`~symplyphysics.symbols.thermodynamics.internal_energy` of the system as a function of its natural variables. Symbol: :code:`U(S, V, N)` Latex: :math:`U{\left(S,V,N \right)}` Dimension: :code:`energy` .. py:data:: law :code:`mu = Derivative(U(S, V, N), N)` Latex: .. math:: \mu = \frac{\partial}{\partial N} U{\left(S,V,N \right)}