Chemical potential is particle count derivative of free energy ============================================================== The chemical potential of the system is the amount of energy the system absorbs or releases due to the introduction of a particle into the system, i.e. when the particle count increases by one. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.chemical_potential_is_particle_count_derivative_of_free_energy .. py:data:: chemical_potential :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: volume :attr:`~symplyphysics.symbols.classical_mechanics.volume` of the system. Symbol: :code:`V` Latex: :math:`V` Dimension: :code:`volume` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: free_energy Helmholtz free energy of the system as a function of its natural variables. .. TODO add link to definition file Symbol: :code:`F(T, V, N)` Latex: :math:`F{\left(T,V,N \right)}` Dimension: :code:`energy` .. py:data:: law :code:`mu = Derivative(F(T, V, N), N)` Latex: .. math:: \mu = \frac{\partial}{\partial N} F{\left(T,V,N \right)}