Chemical potential is particle count derivative of enthalpy =========================================================== The chemical potential of the system is the amount of energy the system absorbs or releases due to the introduction of a particle into the system, i.e. when the particle count increases by one. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.chemical_potential_is_particle_count_derivative_of_enthalpy .. py:data:: chemical_potential :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: entropy :attr:`~symplyphysics.symbols.thermodynamics.entropy` of the system. Symbol: :code:`S` Latex: :math:`S` Dimension: :code:`energy/temperature` .. py:data:: pressure :attr:`~symplyphysics.symbols.classical_mechanics.pressure` inside the system. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`pressure` .. py:data:: particle_count :attr:`~symplyphysics.symbols.basic.particle_count` of the system. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: enthalpy :attr:`~symplyphysics.symbols.thermodynamics.enthalpy` as a function of its natural variables. Symbol: :code:`H(S, p, N)` Latex: :math:`H{\left(S,p,N \right)}` Dimension: :code:`energy` .. py:data:: law :code:`mu = Derivative(H(S, p, N), N)` Latex: .. math:: \mu = \frac{\partial}{\partial N} H{\left(S,p,N \right)}