Single particle state distribution ================================== Occupancy of a single-particle state of bosons is the probability of a single boson to occupy a state with a certain amount of energy. The occupancy depends on the energy of the state and the temperature and the chemical potential of the system. **Notation:** #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Conditions:** #. :math:`E_i > \mu`. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.bose_einstein_statistics.single_particle_state_distribution .. py:data:: occupancy_of_state Occupancy of single-particle state :math:`i`. Symbol: :code:`n_i` Latex: :math:`n_{i}` Dimension: :code:`dimensionless` .. py:data:: energy_of_state :attr:`~symplyphysics.symbols.basic.energy` of single-particle state :math:`i`. Symbol: :code:`E_i` Latex: :math:`E_{i}` Dimension: :code:`energy` .. py:data:: total_chemical_potential Total :attr:`~symplyphysics.symbols.thermodynamics.chemical_potential` of the system. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`energy` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the system. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: law :code:`n_i = 1 / (exp((E_i - mu) / (k_B * T)) - 1)` Latex: .. math:: n_{i} = \frac{1}{\exp{\left(\frac{E_{i} - \mu}{k_\text{B} T} \right)} - 1}