Relativistic velocity tangential to movement ============================================ Consider two inertial reference frames: one fixed (lab frame) and one tied to the moving object (proper frame). The proper frame is moving with some velocity :math:`\vec v` relative to the lab frame. According to the theory of special relativity, the velocity of the object relative to lab frame is *not* equal to the sum of its velocity in the proper frame and the velocity of the proper frame relative to the lab frame. **Notes:** #. One can get the same expression for :math:`{\vec u'}_\perp` in terms of :math:`\vec u` by replacing :math:`\vec v` with :math:`-{\vec v}`. This is essentially the inverse Lorentz transformation from lab frame to proper frame that uses the fact that the lab frame can be viewed as moving with velocity vector :math:`-{\vec v}` relative to the proper frame. **Conditions:** #. Works in special relativity. **Links:** #. `Wikipedia `__. .. TODO: rename file .. py:currentmodule:: symplyphysics.laws.relativistic.vector.relativistic_velocity_parallel_to_movement .. py:data:: tangential_velocity_in_lab_frame Component of the velocity vector relative to the lab frame tangential to :math:`\vec v`. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`u_t` Latex: :math:`{\vec u}_\text{t}` Dimension: :code:`velocity` .. py:data:: velocity_in_proper_frame Velocity vector relative to the proper frame. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`u'` Latex: :math:`{\vec u'}` Dimension: :code:`velocity` .. py:data:: proper_frame_velocity Velocity vector of the proper frame relative to the lab frame. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v` Latex: :math:`{\vec v}` Dimension: :code:`velocity` .. py:data:: law :code:`u_t = v * (dot(u', v) * dot(v, v)^(-1) + 1) * (1 + dot(u', v) / c^2)^(-1)` Latex: .. math:: {\vec u}_\text{t} = {\vec v} \left(\left( {\vec u'}, {\vec v} \right) \left( {\vec v}, {\vec v} \right)^{-1} + 1\right) \left(1 + \frac{\left( {\vec u'}, {\vec v} \right)}{c^{2}}\right)^{-1}