Energy—momentum relation ======================== Relativistic momentum and total relativistic energy of a relativistic particle are related by a linear equation. **Conditions:** #. Velocity :math:`\vec v` and momentum :math:`\vec p` must be parallel to each other. **Links:** #. `Wikipedia, derivable from here `__. .. TODO: find a more exact link .. py:currentmodule:: symplyphysics.laws.relativistic.vector.energy_momentum_relation .. py:data:: total_energy Total energy of the relativistic :attr:`~symplyphysics.symbols.basic.energy`. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: momentum Vector of the particle's relativistic :attr:`~symplyphysics.symbols.classical_mechanics.momentum`. Symbol: :code:`p` Latex: :math:`{\vec p}` Dimension: :code:`momentum` .. py:data:: velocity Vector of the particle's velocity. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v` Latex: :math:`{\vec v}` Dimension: :code:`velocity` .. py:data:: vector_law :code:`p * c^2 = E * v` Latex: .. math:: {\vec p} c^{2} = E {\vec v} .. py:data:: energy_law :code:`E = c^2 * norm(p) / norm(v)` Latex: .. math:: E = c^{2} \frac{\left \Vert {\vec p} \right \Vert}{\left \Vert {\vec v} \right \Vert}