Total energy via momentum and rest mass ======================================= The energy—momentum relation, also called relativistic dispersion relation, is a relativistic equation relating total energy to invariant mass and momentum. It is the extension of mass-energy equivalence (:ref:`Total energy via relativistic mass`) for bodies or systems with non-zero momentum. **Notation:** #. :math:`c` (:code:`c`) is :attr:`~symplyphysics.quantities.speed_of_light`. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.relativistic.total_energy_via_momentum_and_rest_mass .. py:data:: relativistic_energy Total, or relativistic, :attr:`~symplyphysics.symbols.basic.energy` of the body. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: relativistic_momentum Relativistic :attr:`~symplyphysics.symbols.classical_mechanics.momentum` of the body. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`momentum` .. py:data:: invariant_mass :attr:`~symplyphysics.symbols.relativistic_mechanics.rest_mass` of the body. Symbol: :code:`m_0` Latex: :math:`m_{0}` Dimension: :code:`mass` .. py:data:: law :code:`E^2 = (p * c)^2 + (m_0 * c^2)^2` Latex: .. math:: E^{2} = \left(p c\right)^{2} + \left(m_{0} c^{2}\right)^{2}