Coordinate conversion at constant velocity ========================================== Let the frame of reference move relative to the other frame of reference at a constant speed along the X axis, and the origin of the spatial coordinates coincide at the initial moment of time in both systems. Then there are simple transformations that can be used to get the x coordinate in one frame of reference, knowing the x coordinate in another frame of reference. **Notation:** #. :math:`c` (:code:`c`) is :attr:`~symplyphysics.quantities.speed_of_light`. **Links:** #. `Wikipedia, second formula in box `__. .. TODO rename file .. py:currentmodule:: symplyphysics.laws.relativistic.coordinate_conversion_velocity_constant .. py:data:: position_in_proper_frame :attr:`~symplyphysics.symbols.classical_mechanics.position` in the second frame of reference. Symbol: :code:`x_2` Latex: :math:`x_{2}` Dimension: :code:`length` .. py:data:: position_in_lab_frame :attr:`~symplyphysics.symbols.classical_mechanics.position` in the first frame of reference. Symbol: :code:`x_1` Latex: :math:`x_{1}` Dimension: :code:`length` .. py:data:: proper_frame_speed_in_lab_frame :attr:`~symplyphysics.symbols.classical_mechanics.speed` of the second reference frame relative to the first one. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`velocity` .. py:data:: time_in_lab_frame :attr:`~symplyphysics.symbols.basic.time` in the first frame of reference. Symbol: :code:`t_1` Latex: :math:`t_{1}` Dimension: :code:`time` .. py:data:: law :code:`x_2 = (x_1 - v * t_1) / sqrt(1 - (v / c)^2)` Latex: .. math:: x_{2} = \frac{x_{1} - v t_{1}}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}