Time dependent Schrödinger equation in one dimension ==================================================== The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. This law describes the general case of a time-dependent potential and a time-dependent wave function. **Notation:** #. :math:`\hbar` (:code:`hbar`) is :attr:`~symplyphysics.quantities.hbar`. **Notes:** #. This law works in the case of a single spatial dimension. To use it for the :math:`3`-dimensional space, replace the spatial second derivative with the Laplace operator. **Links:** #. Wikipedia .. py:currentmodule:: symplyphysics.laws.quantum_mechanics.schrodinger.time_dependent_equation_in_one_dimension .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time` Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: wave_function Time-dependent :attr:`~symplyphysics.symbols.quantum_mechanics.wave_function` as a function of :attr:`~position` and :attr:`~time`. Symbol: :code:`psi(x, t)` Latex: :math:`\psi{\left(x,t \right)}` Dimension: :code:`1/sqrt(length)` .. py:data:: potential_energy Time-independent :attr:`~symplyphysics.symbols.classical_mechanics.potential_energy` as a function of :attr:`~position`. Symbol: :code:`U(x)` Latex: :math:`U{\left(x \right)}` Dimension: :code:`energy` .. py:data:: particle_mass :attr:`~symplyphysics.symbols.basic.mass` of the quantum particle. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: law :code:`-hbar^2 / (2 * m) * Derivative(psi(x, t), (x, 2)) + U(x) * psi(x, t) = I * hbar * Derivative(psi(x, t), t)` Latex: .. math:: - \frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi{\left(x,t \right)} + U{\left(x \right)} \psi{\left(x,t \right)} = i \hbar \frac{\partial}{\partial t} \psi{\left(x,t \right)}