Quantum harmonic oscillator equation ==================================== The Schrödinger equation for the quantum simple harmonic oscillator governs the wave function of the quantum oscillator. **Notation:** #. :math:`\hbar` (:code:`hbar`) is :attr:`~symplyphysics.quantities.hbar`. **Links:** #. `Physics LibreTexts, formula 7.6.4 `__. .. py:currentmodule:: symplyphysics.laws.quantum_mechanics.harmonic_oscillator.equation .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position` of the particle. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: wave_function :attr:`~symplyphysics.symbols.quantum_mechanics.wave_function` of the oscillating particle. Symbol: :code:`psi(x)` Latex: :math:`\psi{\left(x \right)}` Dimension: :code:`1/sqrt(length)` .. py:data:: particle_mass :attr:`~symplyphysics.symbols.basic.mass` of the particle. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: particle_energy :attr:`~symplyphysics.symbols.basic.energy` of the particle. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the oscillations. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: law :code:`-hbar^2 / (2 * m) * Derivative(psi(x), (x, 2)) + m * w^2 / 2 * x^2 * psi(x) = E * psi(x)` Latex: .. math:: - \frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi{\left(x \right)} + \frac{m \omega^{2}}{2} x^{2} \psi{\left(x \right)} = E \psi{\left(x \right)}