Energy levels of harmonic oscillator ==================================== As opposed to the classical harmonic oscillator, the energy levels of a quantum harmonic oscillator are quantized, meaning that its energy take a value out of a discrete range. These energy levels are equidistant, i.e. the difference between successive energy levels is the same for all levels. **Notation:** #. :math:`\hbar` (:code:`hbar`) is :attr:`~symplyphysics.quantities.hbar`. **Notes** #. This means that the energy of a quantum oscillator cannot be zero and the lowest it can be is the zero-point energy :math:`E_0 = \hbar \omega / 2`. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.quantum_mechanics.harmonic_oscillator.energy_levels .. py:data:: energy_level Energy of the level corresponding to the :attr:`~mode_number`. Symbol: :code:`E_n` Latex: :math:`E_{n}` Dimension: :code:`energy` .. py:data:: mode_number Quantum number of oscillator, which is any non-negative integer (:math:`0, 1, 2, \dots`). See :attr:`~symplyphysics.symbols.basic.nonnegative_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the oscillator. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: law :code:`E_n = (N + 1/2) * hbar * w` Latex: .. math:: E_{n} = \left(N + \frac{1}{2}\right) \hbar \omega