Expectation value of observable =============================== Roughly speaking, an observable is a measurable property of a physical system, such as spin, position, energy, momentum, etc. In terms of Quantum Mechanics, every physical observable corresponds to an operator which acts on the wave function. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.quantum_mechanics.expectation_value_of_observable .. py:data:: mean_observable_value The mean value of the :attr:`~observable` operator. See :attr:`~symplyphysics.symbols.basic.any_quantity`. Symbol: :code:`avg(O)` Latex: :math:`\langle O \rangle` Dimension: :code:`any_dimension` .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: wave_function :attr:`~symplyphysics.symbols.quantum_mechanics.wave_function` as a function of :attr:`~position` and :attr:`~time`. Symbol: :code:`psi(x, t)` Latex: :math:`\psi{\left(x,t \right)}` Dimension: :code:`1/sqrt(length)` .. py:data:: observable Observable operator as a function of :attr:`~wave_function`. See :attr:`~symplyphysics.symbols.basic.any_quantity`. Symbol: :code:`O(psi)` Latex: :math:`O{\left(\psi \right)}` Dimension: :code:`any_dimension` .. py:data:: law :code:`avg(O) = Integral(conjugate(psi(x, t)) * O(psi(x, t)), (x, -oo, oo))` .. The conjugation operator isn't recognized yet by the LaTeX printer. .. math:: \langle O \rangle = \int \limits_{-\infty}^{\infty} \psi^* (x, t) O[\psi](x, t) dx