Solution to the exponential decay equation ========================================== The solution to the exponential decay equation is the product of the initial quantity and the the ratio of the current time to the half-life of the quantity, raised to the power of 2. In other words, for every half-life that passes, the quantity decays by a factor of 2. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.nuclear.law_of_half_life .. py:data:: final_quantity Quantity that still remains and has not decayed after :attr:`~time` :math:`t`. Symbol: :code:`X` Latex: :math:`X` Dimension: :code:`any_dimension` .. py:data:: initial_quantity Initial quantity that will decay. Symbol: :code:`X_0` Latex: :math:`X_{0}` Dimension: :code:`any_dimension` .. py:data:: half_life :attr:`~symplyphysics.symbols.nuclear.half_life` of the decaying quantity. Symbol: :code:`t_1/2` Latex: :math:`t_{1/2}` Dimension: :code:`time` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: law :code:`X = X_0 * 2^(-t / t_1/2)` Latex: .. math:: X = X_{0} \cdot 2^{- \frac{t}{t_{1/2}}}