Velocity of transfer between reference frames ============================================= Suppose two reference frames, one of which is fixed (:math:`S`) and the other one is moving (:math:`S'`). The movement of a body stationary in moving frame :math:`S'` due to the movement of the frame itself is called transfer movement. The velocity related to such movement is called transfer velocity. For any material point :math:`X`, its transfer velocity relative to fixed frame :math:`S` is the sum of the velocity of frame :math:`S'` relative to frame :math:`S` and the cross product of the angular velocity of moving frame's rotation and the position vector of :math:`X` in moving frame :math:`S'`. **Links:** #. `Wikipedia, first formula `__. .. TODO: find English link .. py:currentmodule:: symplyphysics.laws.kinematics.vector.velocity_of_transfer_between_reference_frames .. py:data:: transfer_velocity Vector of transfer velocity of point :math:`X` relative to fixed frame :math:`S`. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v_tr` Latex: :math:`{\vec v}_\text{tr}` Dimension: :code:`velocity` .. py:data:: moving_frame_velocity Vector of moving frame :math:`S'` relative to fixed frame :math:`S`. Symbol: :code:`v_0` Latex: :math:`{\vec v}_{0}` Dimension: :code:`velocity` .. py:data:: angular_velocity Pseudovector of the angular velocity related to the rotation of moving frame :math:`S'` about the instantaneous axis. See :attr:`~symplyphysics.symbols.classical_mechanics.angular_speed`. Symbol: :code:`w` Latex: :math:`{\vec \omega}` Dimension: :code:`angle/time` .. py:data:: position_vector Position vector of point :math:`X` relative to moving frame :math:`S'`. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r` Latex: :math:`{\vec r}` Dimension: :code:`length` .. py:data:: law :code:`v_tr = v_0 + cross(w, r)` Latex: .. math:: {\vec v}_\text{tr} = {\vec v}_{0} + \left[ {\vec \omega}, {\vec r} \right]