Linear displacement is angular displacement cross radius ======================================================== Assuming a body rotating around a fixed axis, the vector of its linear displacement can be expressed as the cross product of the pseudovector of angular displacement and the radius vector of rotation. **Conditions:** #. The axis is fixed. #. Angular displacement pseudovector and radius vector must be orthogonal to one another. **Links:** #. `Physics LibreTexts, formula 11.1.4 `__. .. py:currentmodule:: symplyphysics.laws.kinematics.vector.displacement_is_angular_displacement_cross_radius .. py:function:: displacement_law(angular_displacement_, rotation_radius_) Displacement vector. Law: :code:`s = cross(theta, r)` Latex: .. math:: \vec s = \vec \theta \times \vec r :param angular_displacement\_: pseudovector of angular displacement parallel to axis of rotation Symbol: :code:`theta` Latex: :math:`\vec \theta` Dimension: *angle* :param rotation_radius\_: radius vector pointing away from the rotational axis and perpendicular to it Symbol: :code:`r` Latex: :math:`\vec r` Dimension: *length* :return: vector of linear displacement Symbol: :code:`s` Latex: :math:`\vec s` Dimension: *length*