Acceleration due to non-uniform rotation ======================================== Imagine two reference frames, one of which is fixed (:math:`S`) and the other is moving (:math:`S'`). When :math:`S'` rotates around :math:`S` in a non-uniform way, the acceleration of some body :math:`B` in :math:`S` has a component corresponding to that non-uniform rotation of :math:`S'`. It is part of the transfer acceleration of body :math:`B` in :math:`S`. **Notation:** #. :math:`\vec a \times \vec b` (:code:`cross(a, b)`) is vector product of :math:`\vec a` and :math:`\vec b`. **Links:** #. `Wikipedia <https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D0%BE%D0%B6%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5#%D0%A3%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5>`__. .. TODO find English link .. py:currentmodule:: symplyphysics.laws.kinematics.vector.acceleration_due_to_non_uniform_rotation .. py:function:: non_uniform_rotation_acceleration_law(angular_velocity_, time_, radius_vector_) Acceleration due to non-uniform rotation. Law: :code:`a_rot = cross(Derivative(w(t), t), r)` Latex: .. math:: {\vec a}_\text{rot} = \frac{d \vec \omega}{d t} \times \vec r :param angular_velocity\_: angular velocity as a function of time Symbol: :code:`w(t)` Latex: :math:`\vec \omega(t)` Dimension: *angle* / *time* :param time\_: time Symbol: :code:`t` Dimension: *time* :param radius_vector\_: radius vector, or position vector, of body Symbol: :code:`r` Latex: :math:`\vec r` Dimension: *length* :return: acceleration due to non-uniform rotation Symbol: :code:`a_rot` Latex: :math:`{\vec a}_\text{rot}` Dimension: *acceleration*