Tangential acceleration via angular acceleration and radius =========================================================== The tangential acceleration of a rotating body represents the change in magnitude of the velocity vector, and its vector is tangent to the path of the body. **Conditions:** #. Radius is constant, i.e. :math:`\frac{d r}{d t} = 0.` **Links:** #. Equation 10-22 on p. 269 of "Fundamentals of Physics" by David Halladay et al., 10th Ed. .. py:currentmodule:: symplyphysics.laws.kinematics.tangential_acceleration_via_angular_acceleration_and_radius .. py:data:: tangential_acceleration Tangential :attr:`~symplyphysics.symbols.classical_mechanics.acceleration`. Symbol: :code:`a_t` Latex: :math:`a_{\tau}` Dimension: :code:`acceleration` .. py:data:: angular_acceleration :attr:`~symplyphysics.symbols.classical_mechanics.angular_acceleration`. Symbol: :code:`alpha` Latex: :math:`\alpha` Dimension: :code:`angle/time**2` .. py:data:: radius_of_curvature Instantaneous :attr:`~symplyphysics.symbols.basic.radius_of_curvature`. Symbol: :code:`r` Latex: :math:`r` Dimension: :code:`length` .. py:data:: law :code:`a_t = alpha * r` Latex: .. math:: a_{\tau} = \alpha r